Coalitional Bargaining and Duration in the EU legislative Process

Cesar Garcia Perez de Leon and Emiliano Grossman
Sciences Po, Paris

August, 2013

Abstract
The issue of the duration of the decision-making process has been a source of concern for practitioners and scholars of the EU for a long time. Indeed, while legislation is frequently adopted in the EU, the often lengthy negotiations required to pass significant legislation induce gridlock dynamics that put into question the efficiency of the EU legislative process. In this paper, we explore, theoretically and empirically, how coalitional dynamics in legislative negotiations influence the timing in the adoption of legislation in the EU. We start from the evidence that electoral shifts in 27 member states or the EU lead to different government compositions of the EU Council, providing new opportunities for coalition formation. Using a dynamic model of coalitional bargaining, we argue that when these opportunities allow like-minded governments to form a dominant coalition in the Council, they will push other governments to adopt the decision quickly. In contrast, when only heterogeneous and dispersed coalitions are feasible, incentives to save opportunity costs of delay will vanish. Governments then will be willing to see their views extensively deliberated, and will postpone the adoption of legislation. The result is a slowing down of decisions. We test our claims with data on the winning coalitions for 130 successive compositions of the Council for the left-right and Integration preference conflict dimensions. We combine CMP data with data on duration from the OIE for 1400 legislative acts adopted between 2002 and 2009. The Event History analysis we conduct for this period confirms the expectations of our explicative model. The results are robust and persist after controlling for institutional measures such as the change of decision rule, the legislative procedure, and the number of lectures of the EP.
1 Introduction

In democratic legislatures, representative lawmaking typically involves for legis-
lative bills to be debated, amended and scrutinized by the core of the legislature
in plenary sessions. Yet, legislative assemblies face a hard constraint of plenary
time (Cox 2006). Given the trade-off between internal decision-making costs of
delay and external costs derived from the lack of duly scrutiny of legislative deci-
sions, the strategic use of time becomes paramount in guiding legislative behavior
and in delivering policy outputs. The literature has commonly highlighted the
role of constitutional and procedural rules in mediating the strategic control of the
timing of the legislative agenda and its effects on legislative productivity (Cox &
However, institutional system-wide variables do not succeed in capturing strategic
As a consequence, scholars have been trying to understand how coalitional bar-
gaining in majority legislatures endogenously generates dynamics of swiftness
and gridlock in lawmaking. The basic tenet of this research is that under chang-
ing circumstances and exogenous shocks during the life of legislative bills, coali-
tions of legislators may harbor motivations for delaying the moment of the adop-
tion of legislation. Martin (Martin 2004), Becker and Saalfeld (2004), and War-
wick (1998) take this perspective in empirical studies dealing with parliamen-
present theories of government termination, congressional floor voting and con-
tinuing programs, respectively, based on this approach. In this article, we focus
on the Council of the European Union to analyze, theoretically and empirically,
how constant changes in the composition of preferences of the legislature during
the process of bargaining over legislative bills induce coalitions of legislators to
strategically mediate the timing in the adoption of legislation.

The Council of the European Union (henceforth the Council) is a super-majority
rule legislature where key legislative bargains among the 27\(^1\) member govern-
ments of the European Union are played. In contrast with national legislatures, the
composition of the Council changes each time that an electoral process leads to a
government turnover in one of the member governments of the legislature. In this
article, we conceive of coalitional bargaining over legislative issues in the Council
as occurring sequentially, following electoral processes in the 27 member states.
We argue that, given the prospect of changes resulting from government turnover,
governments in the Council with policy and time preferences evaluate the oppor-
tunities to form a majority coalition in order to vote legislation, not only on the basis of the utility they obtain from a vote in a given electoral composition of the Council, but also with regard to the utility they rationally expect to obtain from the formation of an alternative majority coalition in the future. Specifically, we expect that when a given spatial composition of the Council gives governments the opportunity to form a policy-cohesive majority coalition with like-minded governments, the prospect of adopting a collective policy tilt towards their side of the policy spectrum will give members of the coalition incentives to force a quick vote on the issue, so as to realise their payoffs immediately and save opportunity costs of delay. Conversely, when only majority coalitions with a large dispersion of preferences can form, the policy payoffs that members of a decisive coalition may obtain from an immediate vote are to be diluted. Governments will rationally anticipate that the policy payoffs from reaching a coalitional agreement in the next electoral composition of the Council will offset the costs of delay that accrue from waiting. Therefore, we expect governments to hold incentives to postpone the vote on the issue under conditions of preference heterogeneity, hence delaying the adoption of legislation. Finally, we understand that as discussions on issues lag for several legislative periods of bargaining, most governments in the Council will be willing to avoid serious risks of delay in the implementation of urgent EU policies. Accordingly, we hypothesize that the effect of coalition cohesiveness on accelerating (delaying) the adoption of legislation will wear off over time.

While previous studies have relied on structural factors to account for the variation of duration in the EU legislative process, no study, to date, has explored the effects of the strategic behavior of governments in the Council. This article explores changes in coalitional behavior for 130 successive compositions of the Council for the left-right and Integration conflict dimensions. We combine data on government preferences from the Comparative Manifesto Project with data on duration for 1400 legislative acts adopted between 2002 and 2009 from the Observatory of European Institutions dataset. We develop a novel measurement strategy of preference heterogeneity within coalitions that allows us to specifically capture the like-mindedness of decisive coalitions following changes in the composition of the legislature.

The rest of this paper is structured as follows. After reviewing the literature on duration in the EU, we present a dynamic formal model of coalitional bargaining in the Council with changing circumstances. We test the implications of our theory with an Event History Analysis for the states changes of winning coalitions in the Council under the period studied. We find that strategic behavior of coalitions
in a dynamic bargaining environment has a strong effect in the duration of the EU legislative process. This result is robust and fundamentally qualifies traditional structural explanations stressing the bicameral institutional form of the EU, the increase of the number of actors in the Council, and the general conflictuality of the Council.

2 The Study of Duration in the EU

Studying the duration of legislative procedure is a welcome indicator of the relative paralysis of the decision making process. Gridlock and stalemate are central objects in the study of legislative politics and political institutions in general. Comparative politics, to some extent, originates in the study in the comparative likeliness to witness this type of institutional failure. In the US, the consequences of divided government have regularly been the focus of academic attention, at least since Mayhew’s seminal Divided we govern (Mayhew 1991). Mayhew himself has privileged the study of “important laws? as the main indicator of the fluidity of the legislative process. Many of those who have contested his results have tended to reformulate the same indicator. Others have focused on “failed legislation? (Edwards, Barrett & Peake 1997) and still others on spending and corruption (Tsebelis 2002, Cox & McCubbins 2001). The duration of legislative procedures represents another possible indicator of gridlock and stalemate. It has the advantage of being continuous, when most other indicators are dichotomized. As the discussion and model above have shown, this represents a real value added for the study and the understanding of the legislative procedure. Duration models have originally been applied originally to the US, but have since been extended to other cases, such as Germany (Martin & Vanberg 2005). Yet, the EU has, by far, become the main object of duration models.

The success of the duration models among students of the EU is certainly linked to EU decision-making and the centrality of law-making in this process. Legislative decisions in the European Union involve three main institutional actors: the Commission, the Council of the European Union and the European Parliament. Successive treaty amendments of the EU have changed the decision rules and procedures under which these institutions interact. Under all EU legislative procedures, the Commission initiates legislation, which must be adopted through a common position of the Council requiring a qualified majority of weighed votes of the, now, 27 members states of the EU. Unanimity is required for justice and home affaires, taxation and most aspects of social policy. For a long time the
European Parliament had a mostly consultative role. However, since 1997, EU treaties have progressively expanded the use of the co-decision legislative procedure, under which a final adoption of a bill requires both a qualified majority in the Council and a simple majority of the European Parliament. In addition, the Council has undergone fundamental changes in the constitutional scheme of quantitative voting as a consequence of successive enlargements. Notably after the Eastern enlargements in 2004 and 2007, the Council has also become more heterogeneous, displaying significant differences in the socioeconomic conditions and domestic policies of its member governments (Hertz & Leuffen 2011)(Dobbins, 2008).

The academic and interest and concern about the EU legislative efficiency derives from these developments. One of the most salient characteristics of the EU is the very high adoption rate of legislation, which amounts to about 80 per cent of the total legislation introduced. The legislative procedure of the EU has another peculiarity that is worth mentioning and which reinforces the impression of permanent flux. Unlike most national legislatures, it does not apply the principle of legislative discontinuity, which clears the legislative agenda of the legislature at its end. Put differently, the legislative programme of each EU legislature continues beyond its term (cf. ?). Elections do not represent a break in legislative activity. The absence of truly competitive elections and of effective partisan government of the EU are additional explanatory factors, despite some evidence to the contrary (?). Accordingly, the literature has evaluated the propensity of gridlock in the EU by examining how long legislative bills lag in the legislative process before being adopted.

Previous empirical studies have converged in confirming that the formal expansion of the use of qualified majority voting increased the hazard rate of the adoption of legislation, and that the involvement of the European Parliament and the general heterogeneity of preferences among member governments in the Council tended to slow down the legislative process (König 2007, Golub 2007, Drüner 2008, Golub 2008). Drawing on Tsebelis’s veto players theory on policy stability (Tsebelis 2002), this research gives a straightforward structural interpretation of these regularities: the variation in the number of decisive legislators and their distance in the policy space is assumed to impose variable transaction costs (negotiation frictions) that determine the timing on the adoption of legislation. Initial survival analyses for the EU legislative output offered, at best, an exploratory support to this interpretation (Golub 1999, Schulz & König 2000, König 2007). Because they implicitly presumed that explanatory factors of duration remained fixed over the lifetime of legislative bills, these first assessments yielded unreli-
able conclusions (Box-Steffensmeier & Jones 2004). Further studies by Golub (2007, 2008) and Golub and Steunenberg (2007) explored the importance of state changes as explanatory factors (time-varying covariates), as well as potential non-proportional effects of covariates over time (see the more detailed discussion in the data section). These methodological improvements led to critical and intriguing qualifications of previous findings. In particular, Golub’s analysis reports the intervention of the European Parliament as the main factor inducing legislative delay, independently of the change of amendment procedure. Importantly, however, Golub finds ambiguous effects of the general heterogeneity of government preferences. On the one hand, successive enlargements appear to have no effect on duration. On the other hand, the presence of a sole extreme actor in the Council is enough to induce significant delays. A further relevant qualification is the finding that the effect that covariates have on the likelihood that a bill will be adopted changes with time. More precisely, after some time of negotiation on a bill, this effect “wears off” or even reverse direction in some cases (Golub & Steunenberg 2007).

Golub’s qualifications reveal important shortcomings of the structural traditional approach and the need to address the issue of how the dynamics of the decision-making mediate the timing of legislation. The lack of attention to governments’ behavior in the decision-making process does not only raise issues of explanation and interpretation. We believe it generates critical inaccuracies in the assessment and measurement of the impact of the institutional and political variables that has been so far studied in a structural way. Our perspective on coalitional bargaining advances an explanation based on strategic choice of governments and yields a coherent and reliable account of the determinants of the variation in the duration of the EU legislative process.

We show that coalitional bargaining plays an important role in the legislative process has been attested by clear tendencies of coalition formation in preliminary negotiations in the Council (Naurin & Rutger 2008, Thomson Robert 2006) and in roll rates from voting sessions (Hagemann & Hoyland 2008, Mattila & Lane 2001, Mattila 2009, Peter van Roozendaal 2011)(Mattila, 2004; 2007).

Yet, how does coalitional behaviour influence the duration of the legislative process? Our view is that anticipating government turnover resulting from domestic elections give incentives and disincentives to all governments in the Council to form coalitions with like-minded governments so as to mediate the moment of the vote on legislative bills. Two features of electoral processes in the context of EU negotiations substantiate our argument. First, national electoral periods always create some opportunity costs of delay for the Council. A government holding
elections needs to dedicate considerable time and resources to campaigning and it is unable to negotiate domestic sensitive issues with their European partners. Sometimes, governments may want to postpone a potentially unpopular decision until after the national election. Diplomats’ concerns of the paralyzing effect of domestic elections were openly voiced, for instance, on the February 2013 negotiations for the EU seven-year budget. Secondly, the coming into office of a new executive in one member state of the European Union generates new opportunities for policy alliances in the Council legislature. For instance, the last French presidential elections on April 2012, resulting in a the replacement in office of the conservative party UMP by the left-wing party PS, prompted a new array of forces in the Council, particularly distancing the position of the French Government from the conservative governments of Germany and the UK in key economic policies.

Our central point is that legislators in make choices about whether to form coalitions to vote on legislative bills or to postpone the vote. The preference for voting now or later will depend on the both the opportunity costs of delay and the expectation of forming new alliances in future compositions of the Council. To be more explicit, we hypothesize that only when governments can form a decisive policy-cohesive (homogenous) coalition with like-minded legislators, they will have incentives to prompt a vote on legislative bills. Given the absence of a discontinuity principle, there is no strong incentive, for instance, to become more active before the end of the legislature (cf. supra).

An additional relevant feature of scheme is the integration of the status quo in the preference of governments. The importance for the location of the status quo for the analysis of timing cannot be overstated. If the status quo is a stable policy for most governments, it is simply very unlikely that the Council will to decide to vote on an issue over maintaining the status quo and move to a second period of bargaining. Yet, with the notable exception of Druner (2008), the extant literature has just ignored this issue. Our view is that the occurrence of policy dispersed coalitions is likely to make the status quo a stable policy, hence inducing a preference of governments for postponement of a vote. However, if a decisive coalition in the Council is policy cohesive, their members will have a preference for changing the status quo and vote on the issue immediately.

In sum, our basic argument states that it is not on institutional features of the legislative process, but on the strategic role of decisive coalitions, where the control of the timing of the EU legislative agenda rests; and it is the level of policy heterogeneity of decisive coalitions which tips the control of the agenda towards accelerating or delaying the vote on legislative bills.
3 A Dynamic Model of Coalitional Bargaining in the Council of the European Union

We adopt a cooperative framework for the study of coalitional bargaining (see especially McKelvey 1978, Schofield 2008, Sened 1996). We characterize decision-making in the Council as finite-period repeated committee weighted voting game over policy. According to the EU legislative procedures, the European Commission has the prerogative to introduce EU legislation by presenting bills for adoption to the Council and the European Parliament. We are interested in the process by which Council votes to adopt a common position after the Commission bills are received, so that the Commission does not longer intervene in this process. We do not investigate further the amendments of the EP after the Council’s common position is adopted. Empirically, we consider the effect of amendments of the EP on legislative activity separately. Our focus is the bargaining in the Council in an environment in which critical events giving information about changes in the preference composition of the Council shape opportunities for coalitions of governments to mediate the timing of adoption of the Council’s common position. The representation of the dynamics of our model find thus inspiration on models of “government termination” which introduce the relevance of critical events or shocks in determining the preferences of actors over outcomes over time (Diermeier & Feddersen 1998, Baron 1998). Our model differs from these research in the focus on the legislative process and in the cooperative approach to analyze this process.

The Model

Decision-Making Structure

We begin building our model with the basic legal form of the game and the structure of government preferences. Let \(N = \{1, 2, \ldots\} \) be a committee voting legislature, such as the Council of Ministers. Let \(C \subseteq N \) be any coalition of governments, and \(v(C) \) be a characteristic function specifying the payoffs that the members of \(C \) can secure for themselves, regardless the actions of other governments in the legislature. Any collective decision on policy in the Council needs to be by made a supermajority of governments. Let \(L \) be the collection of decisive or winning coalitions, so that \(L = \{C \subseteq N \mid \sum_{i \in C} w_i \geq q\} \), where \(w \) denotes the voting weight of member governments. We finally specify that the game is
proper, so that if \(C \in L \), then \(N \setminus C \notin L \). The Council votes a common position for a policy over a set of \(M = \{1, 2 \ldots m\} \) unidimensional issues in a Euclidean space \(\mathbb{R}^n \). For each issue, let \(X \subset \mathbb{R}^n \) be the real number segment line describing the set of feasible nonnegative alternative outcomes that governments confront among the larger set \(M \). Utility over policy is not transferable. Therefore, The final outcome takes the form in which the winning coalition is assigned anything in \(X \), while losing coalitions get nothing, so that the characteristic function of the game specifies that \(L = \{C|v(C) = X\} \).

We crucially assume policy preferences of governments over policy outcomes in \(X \) to be structurally induced in such a way that governments take into account the likelihood that other like-minded governments will support the outcome. We thus define like-mindedness between two actors in terms of the support for a common outcome. From the perspective of an individual government, another government is more like-minded the less policy concessions it demands in order to support a common outcome. Accordingly, in evaluating its utility from alternative outcomes, any government estimates the policy gains it obtains from the outcome and the policy concessions it needs to give other governments to obtain its support for the outcome. The government then chooses the combination of gains and concessions which yields greater utility. To capture this behavioral rationale, we define the preference of a government for a given policy outcome as the sum of the quadratic Euclidean distance between its ideal position and the policy outcome and the distance between each of the other governments’ position and the outcome, divided by the number of partners integrating the assembly or group in which the government participates. Formally, let \(U \) be a smooth utility function representing the preference profile of all governments on \(X \). Then, for any actor \(i \in N \) and any outcome \(x \in X \), there is a point \(x_i \in \mathbb{R}^n \) such that

\[
U_i(x) = k_i - \left(\frac{w_i(x - x_i)^2 + \sum_{j \in N} w_j(x - x_j)^2}{N} \right)
\]

where \(k_i \) is a constant term to guarantee nonnegative utilities and \(i \neq j \). The first term in the numerator of the main expression equals the policy gains that government \(i \) estimates from the policy outcome, these gains being larger the less the Euclidian distance of the weighed ideal position of the government to the outcome, where the weights are the voting weight of the government. Thus, with equal preferences, Germany, with 10 votes in the Council, would obtain more pol-
icy gains than Malta, who has only 3 constitutional votes assigned. The second term in the numerator equals the policy concessions that each of the other governments, j, claim in exchange for implementing this outcome, where the amount of concessions are also weighted by the partners’ voting power. The assumption that a government will be willing to give policy concessions to like-minded legislators follows naturally from the fact that only governments who are represented in the winning coalition obtain a payoff from the game. If a government does not give other governments sufficient concessions, the derived increase of disutility for these other governments will make them choose a different partner, and a fortiori, a different outcome. Thus, for any individual government, the need of support from other governments to implement a given policy is likely to require to give in policy concessions. As we formally state below, these concessions decrease as other governments supporting the policy are like-minded governments placed on the same side of the policy spectrum.

Finally, the division by the total number of governments in the group corrects for the effect that groups of more actors will automatically give less utility to the government i, as she will need to give up more policy gains even if other partners are close in the policy space.

We develop this scheme further in by incorporating the dynamic feature that exogenous events occur while the legislature is negotiating, giving information to governments about imminent electoral processes occurring in one of the member states in the Council legislature. As a result of the prospect of elections in one of the member states of the EU, the set of initial set of feasible outcomes that the Council confronts is thus enlarged to the policy outcomes that are expected to occur with the change in the composition of preferences of the Council in the future. We impose the restriction that government interests for policy outcomes are sincere and time separable. Any government thus hold a single ideal point, x_i, with reference both current and expected outcomes in X. This restriction is justified in the context in which change in the distribution of preferences of the legislature in the future is due to the substitution of legislators in the assembly, given government turnover. Because expected policy outcomes can only emanate because of the incorporation of different governments, the possibility of multiple-trial negotiations among governments or sequential vote-trading is excluded.

To represent this dynamic feature of the committee voting game, let the game have a finite number of discrete periods, $T = \{t, t + 1, \ldots, 1 - t\}$. Assume that when the game starts at period t, governments have complete information about the status quo alternative, $x^0 \in X$, and about the distribution of preferences of other governments in the current electoral composition of the Council. Assume
further that, in the same period, governments receive information about the political climate regarding imminent elections and, based on this information, form rational expectations about the changes in preference configuration of the legislature if the bargaining continues to a next period. Let $X_t \subset X$ be the subset of feasible policy alternatives in the Council that governments know with certainty at time t, so that any policy $x^t \in X_t$. Let $X_{t+1}(s_{t+1}) \subset X$ be the choice subset from which governments rationally expect policies to be drawn at $t + 1$, where there are S_{t+1} states of nature, $s_{t+1} = 1, \ldots, S_{t+1}$, at time $t + 1$, given the information governments have at time t about imminent elections, with an associated probability $\pi(s_{t+1})$ of observing some state s_{t+1}. Correspondingly, any $x^{t+1} \in X_{t+1}(s_{t+1})$.

If a policy proposal x^t is accepted for a vote, then the vote takes place, the common position is adopted and the game ends. Note that a proposal for a common position might be to vote to retain the status quo policy, $x^t = x^0$, and if accepted, it becomes the committee choice. If the proposal for a vote in is rejected, the vote is postponed. Then, the status quo remains as a provisional outcome and bargaining moves to new period $t + 1$ after the domestic elections bring a new Council legislature. The sequence repeats until such a period as the committee accepts to vote a proposal. Figure 1 shows the sequence the game.

In considering the government preferences for any proposal presented in the current period t, it should be noted that the status quo alternative may be the preferred option of some governments, while it may be a terrible option for others. Let us fix for convenience the status quo alternative at the left of any other alternative in the one-dimensional policy space, $x^0 < x^t$. The utility that any government i derives from first period policy proposal, x^t thus depends on the distance between her preference for the proposal and the preference it has for $x^0 \in X$. Given the preference profile U, we define:

$$EU_i(x^t) = k_i - \left(\frac{w_i(x^t - x_i)^2 + \sum_{j \in N} w_j (x^t - x_j)^2}{N} \right)$$

$$-k_i - \left(\frac{w_i(x^0 - x_i)^2 + \sum_{j \in N} w_j (x^0 - x_j)^2}{N} \right)$$

Under the hypothesis of rational expectations, governments believe that if a
Figure 1: Path of play

SQ

x^t proposed for a vote

pre-electoral event setting expected policies $E_t f(x^{t+1})$

x^t accepted

x^t rejected

Council adopts Common Position x^t

SQ

x^{t+1} proposed for a vote ...
vote is postponed they will reap the payoffs of a new proposal to be presented in
the next period. Then, i’s expected utility for any proposal x^{t+1} equals:

$$EU_i(x^{t+1})$$

$$= \delta \sum_{s_{t+1}} \left[k_i - \left(\frac{w_i(x^{t+1}(s_{t+1}) - x_i)^2 + \sum_{j \in N} w_j(s_{t+1}) - x_j)^2}{N} \right) \right] \pi(s_{t+1})$$

where $\delta \in (0, 1)$ is a constant discount factor, which we assume to be common to
all governments, $\delta_i = \delta$ for all $i \in N$. The incentives of a government for voting
for a proposal at time t depend on the difference between $EU_i(x^t)$ and $EU_i(x^{t+1})$.
That is, i’s expected utility for voting in the first period, $EU_i(V^t)$ is the following:

$$EU_i(V^t) = \left[k_i - \left(\frac{w_i(x^t - x_i)^2 + \sum_{j \in N} w_j(x^t - x_j)^2}{N} \right) \right]$$

$$- \sum_{s_{t+1}} \left[(1 - \delta) \left(k_i - \left(\frac{w_i(x^0 - x_i)^2 + \sum_{j \in N} w_j(x^0 - x_j)^2}{N} \right) \right) \right]$$

$$+ \delta \left(k_i - \left(\frac{w_i(x^{t+1}(s_{t+1}) - x_i)^2 + \sum_{j \in N} w_j(s_{t+1}) - x_j)^2}{N} \right) \right] \pi(s_{t+1})$$
A government i’s expected payoffs from voting thus is given by the two temporal terms. The first term equals the payoffs that government i estimates from the proposal presented in the current period, x^t. The second term indicates i’s payoffs derived from the sum of maintaining the status quo x^0 and i’s discounted value of a policy proposal x^{t+1} that i rationally expects to be introduced on the floor if new electoral process introduces changes in the composition of preferences in the legislature. Finally, the common discount factor δ reflects how the Council as a collective body is pressured by the opportunity costs of leaving other issues on the legislative agenda unaddressed. When the future is very important relative to the present, governments will be patient. At the extreme, if $\delta = 1$, governments will not care about opportunity costs. They will be indifferent if the decision is taken sooner or latter and their decision for voting or postponement will only be guided by policy considerations. On the contrary, as the future becomes less important, $1 < \delta$, governments will be more impatient to reach an agreement. Thus, although the set policies in each new period may be more or less rewarding by a government in comparison with the precedent policies, the Council legislature generally discounts the value of time spent from delaying the decision on adoption of legislation.

Coalitional Bargaining

We solve the model by finding the conditions of existence of a proposal for a vote that the Council supports. Alternatively, we specify when these conditions do not meet, so that the Council decides for postponement of the vote on a legislative issue. How does the Council decide? Following McKelvey et al. conception of competition among coalitions, we represent the Council’s choice for a vote (or the lack of it) as a process in which potential winning coalitions compete in presenting proposals for a policy compromise to individual governments in order to gain sufficient support for a vote (McKelvey et al, 1978; see de Leon, 2012; Sened, 1996). Before we state the conditions for voting or postponement, we introduce three definitions and two lemmas that set up general framework of a competition among coalitions in the simple voting game we are describing:

Definition 1 A coalitional proposal of $C \subseteq N$ is an orderd pair (x, C) such that $x \in v(C)$
Definition 2
For any two distinct \((x, C)\) and \((x', C')\) \(\in X, C \neq C'\).

We first define a coalitional proposal as a policy point of a coalition that can gather the sufficient number of votes to win. The second definition states the requirement that each coalition can present exactly one proposal. Otherwise, the scheme of competition among coalitions would be absent. To see how coalitional proposals are selected in the present model, we only need to compare the utility functions of governments for potential proposals of a given winning coalition. Our model of preferences hypothesizes that governments evaluate their utility from a given policy outcome based on considerations of both their policy gains from the outcome and the policy concessions they will need to give other governments in order to see these outcome accepted. Given these motivations, a policy proposal resulting from a bargaining that maximizes the balance between policy gains and concessions for all actors in the coalition will be selected by the members of the coalition in favor to alternative proposals. The following lemma formalizes this statement:

Lemma 1
Given the utility profile \(U\), actors in a winning coalition will select as the coalitional proposal the proposal that optimizes the weighed sum of all members of the coalition:

\[
(x, C) = \arg\max_{x \in X} \sum_{i \in C} k_i - \left(\frac{w_i(x - x_i)^2 + \sum_{j \in N} w_j(x - x_j)^2}{C} \right), \text{ for any } C \equiv v(C)
\]

Note that Lemma 1 states that any government will obtain a greater utility the closer all the legislators in the decisive group or coalition are to the policy proposal. That is, the choice based on the balance of gains and concessions for all actors in a given coalition always brings together a group of like-minded governments who are placed on the same side of the issue. Specifically, the coalition bringing the most satisfactory policy proposal to any actor in the coalition will be emph the most policy cohesive coalition that may form. Naturally, this coalition will also be minimum winning.

We turn now to the define the conditions of dominance in the competition among coalitions. The critical social choice in a competition among coalitions rests on the pivotal or critical members between coalitions, that is, the actors who are in the intersection of two or more potential winning coalitions (McKelvey et al. 1978: 606). As long as pivotal members have diverging preferences for the
proposals of winning coalitions, no proposal will dominate the others and the social choice will be unstable. Given the application of a decision rule, it follows that a coalitional proposal can be selected as a stable outcome only if it is undominated by any other proposal in the set of feasible outcomes.

Definition 3 For any two policy proposals \((x, C)\) and \((x', C')\), \((x, C)\) is undominated by \((x', C')\) if it is not the case that \(EU(x') \geq_i EU(x)\) for all \(i \in C \cap C'\).

Clearly, by Lemma 1, any government who is to chose between the proposals of two different winning coalitions will also prefer the one that maximizes its utility. This leads us to a critical statement of dominance in our game. Other things being equal, a coalitional proposal offered by a minimum winning coalition more policy cohesive than other alternative coalitions will always give more utility to all its pivotal members than any proposal offered by these alternative coalitions, and therefore will be undominated in the game:

Lemma 2 For two policy proposals \((x, C)\) and \((x', C')\), \((x, C)\) is undominated by \((x', C')\), if, given the preference profile \(U\), \(C\) is more policy-cohesive than \(C'\), for all \(i \in C \cap C'\).

We are now in a position to present our results regarding the selection of a voting proposal. When decisions for voting are guided by expectations about the future, we need to consider the time preferences of legislators. Policy considerations will be thus compounded by incentives to save opportunity costs of leaving other issues on the agenda unaddressed. The incentive to save opportunity costs is captured by the discount factor parameter \(\delta\). The relationship between policy and time preferences generates two possible and exhaustive equilibriums outcomes. We present these outcomes and implications of these outcomes in terms of the utility of the decisive members of the Council for a vote.

Proposition 1 A voting equilibrium exists if, given the preference profile \(U\), there is a set of proposals for a vote in the period \(t\) presented by decisive coalitions which are sufficiently policy-cohesive so as to give more or equal payoffs to its members than the payoffs given by the sum of maintaining the status quo and the discounted value of any other proposal expected to be presented by a coalition in the period \(t + 1\). Therefore, the set of proposals accepted for a vote will be
undominated by any other proposal in \(X\). Let \(V^* \subseteq X\) denote the set of proposals accepted for a vote at time \(t\). Then,

\[
V^* = \{(x^t, C) \in X^t \subset X | \text{ for no } (x^{t+1}, C') \in X^{(t+1)} \subset X, EU(x^{t+1}) > i EU(x^t), \text{for all } i \in v(C)\}.
\]

Then,

\[V^* \neq \emptyset.\]

Proposition 1 is a standard definition of the core. It differs only in the non-standard definition of voting proposals, as induced by the utility functions of like-minded legislators, based on their combination of policy gains and concessions. The conditions of existence of this equilibrium indicate that policy gains from proposals for a vote at the current period will induce governments in the decisive coalition to save the opportunity costs of delay expected to accrue from any proposal presented by any other coalition in the next period. The existence of a non-empty core for of voting proposals implies that the utility of the decisive group for a vote is positive:

\[EU_i(V^t) \geq 0 \text{ for all } i \in v(C).\]

The next proposition establishes the analytical opposite of the voting equilibrium, that is, the conditions for the postponement of a vote on the issue.

Proposition 2 A delay equilibrium exists if, given the preference profile \(U\), there is not a set of proposals for a vote in the period \(t\) presented by decisive coalitions which are sufficiently policy-cohesive so as to give the a least the same payoffs to its members as the sum of payoffs given by maintaining the status quo and the discounted value of any other proposal expected to be presented by a coalition in the period \(t+1\). Then, the set of proposals accepted for a vote, \(V^* \subseteq X\), will be empty:

\[V^* = \emptyset.\]

Clearly, the postponement equilibrium is based on the rational expectation that future decisive coalitions will offer policy gains that offset the costs of waiting
to adopting a common position. Because of these expectations, the utility from a vote in the current period for any member in the Council legislature is then strictly negative:

$$EU_i(V^t) < 0 \text{ for all } i \in N.$$

Figure 2 and Figure 3 illustrate the occurrence of voting and delays equilibriums. To gain a sense of the impact of discount factor in determining the existence of these equilibriums we first represent in Figure 2 the scenario in which governments are assumed to be absolutely patient, so that governments care only about policy. The “voting zone” thus includes proposals from decisive coalitions in the period t that are more policy cohesive (less heterogeneous) than coalitions that are expected to form in the period $t+1$. This is the case of the coalition C in the figure, presenting the proposal (x^t, C). Conversely, the “delay zone” includes proposals from coalitions for a vote that are more heterogeneous that those to be expected to form in the future. In the figure, the delay zone includes the coalition C'' formed in the first period and presenting a proposal (x^t, C''). This coalition is less cohesive that the expected future coalitions C', presenting proposals (x^{t+1}, C'). In this scenario of with a discount factor of $\delta = 1$, the expectation that current coalitions are be more policy cohesive than coalitions expected to form in the next round of bargaining is necessary to induce legislators to vote immediately. Simply put, policy incentives guide completely the decision, so that only a cohesive coalition will make them better off with regard to waiting.

In Figure 3, we illustrate the case in which impatience plays a role. As legislators become impatient, opportunity costs of delay become relevant in making a decision. Because governments are impatient, their considerations for policy gains will be relatively offset by the willingness to pass a decision soon. Because the policy payoffs in expected future coalitions are discounted with time, the required cohesiveness of coalitions to pass a proposal for a vote in the current period decreases. We can see in the figure that both coalitions C and C'' are more heterogeneous than future coalitions C', and are in the voting zone. Governments are thus expected to be more likely to accept largely inclusive or universalistic agreements as the pressure of leaving other issues on the agenda unaddressed increases.
Figure 2: Voting Equilibrium

- Expected policy heterogeneity of coalitions in period t+1
- Delay zone: $EU_i(V^i) < 0$
- Voting zone: $EU_i(V^i) \geq 0$
- Expected policy heterogeneity of decisive coalitions in period t
Figure 3: Voting equilibrium by increase of discount factor

\[\delta < 1 \]

Expected policy heterogeneity of coalitions in period \(t+1 \)

\[\text{Delay zone} \]

\[EU_i(V^i) < 0 \]

Voting zone

\[EU_i(V^i) \geq 0 \]

\(C' \quad (x^{t+1}, C') \)

\(SQ \)

\((x^t, C) \)

\((x^t, C'') \)

\(C \)

\(C'' \)

Expected policy heterogeneity of decisive coalitions in period \(t \) (equal for \(C \) and \(C'' \))
4 Data and methods

This section will test the above theoretical claims empirically. Empirical analyses of duration of the legislative procedure are not new in political science. Tests have focused especially on the US Congress and the EU. As our model shows, we are interested, in particular, in how the duration of legislative procedures can be explained through levels of conflict within political institutions. This is also rather standard, as many previous contributions have worked with measures of ideological range. Yet, we suggest several improvements with regard to previous work. These bring our models in line with our theoretical model and empirical realities. First, responding to criticisms of existing work, we develop an approach that takes into account state changes during legislative procedures. Moreover, we develop a much more fine-grained measure of ideological tension within political institutions.

4.1 Measuring council positions

As Goetz and Meyer-Sahling (2009) have pointed out, the Council of ministers of the EU has a rather shorter “political time“ than other EU institutions. While they follow rather “normal” terms, i.e. terms comparable to those of most national political systems, the permanent interaction with the member states’ political systems creates a state of permanent flux. As a consequence, it is important, to add this exogenous variable to our equation. Following the earlier discussion on time-varying covariants, Council composition changes represent a perfect case of communal covariants. For the EU, given the low salience of EU issues at national elections, the exogeneity of the Council composition is of little doubt.

In order to take this communal covariate into account, our analysis takes into account each composition of the Council separately and predicts the likeliness of any given bill being adopted for each Council composition during its ‘lifetime’, i.e. between its introduction and its eventual adoption. We use data from the manifestoes project on left-right placement and pro-/anti-EU placement of parties\(^1\). Each cabinet is assigned a weighted mean position.

Beyond measuring council positions, an even more important problem has concerned the steadily changing composition of the Council. Unlike other parliamentary chambers, the Council is almost permanently changing. Its members are representatives of national governments. Provided that there are 27 member states, elections and, thus, potential changes in the Council’s composition are very
common. They take place several times a year. As virtually all political systems within the EU are parliamentary, the great majority hardly ever reach the end of the electoral term. As a consequence, for the period under study, i.e. From November 2001 to January 2012, we count no less than 108 different compositions of the Council. Its composition thus changes more than ten times per year on average.

Work on positions in the Council of ministers have pursued various strategies to assess such positions. Some have focused on past alliances (Mattila & Lane 2001), looking at aggregation patterns over time for those votes that have been advertised. Drüner and colleagues (Drüner, Mastenbroek, Schneider & Selck 2006) have developed an original approach concentrating on revealed positions in four different policy areas. They make a strong point concerning the importance of historical voting patterns. We have a different take on those issues. We prefer to look on the political positions of governments. This is not to deny the importance of historical positions. It is undeniable that, especially with regard to foreign and European policymaking, there is often a large consensus within given countries that transcends classical left-right divide. To some extent, this is confirmed by the
previously cited studies that account for the existence of north-south or east-west divides in decision-making.

The paper suggests a new, though not original, way to calculate proximity and proximity of members states within the Council. Where the majority of papers in this area have usually resorted to “polarization” or ideological range measures (e.g. König 2007), we proceed differently. Like König, we estimate the positions for all governments. We compute two different scores, one for classical left-right and one for pro- and anti-Europe stances of parties, as coded by expert surveys within the Comparative Manifestoes Project (Klingemann, Volkens, Bara, Budge, McDonald et al. 2006).

Where we diverge from previous studies is by relying on a different measure of conflict. While König and others rely on some type of ideological-range related measure, we believe that those measures have little explanatory power. As Warwick has shown, it is important to distinguish the overall range from what is going on within the majority. It is the distance with regard to policy position which will (co-)determine the emergence of a coalition (Warwick 1998). Especially under parliamentary government, it is within government or within the majority that most major decisions are taken (cf. Lijphart 1999). Typical polarization measures are certainly significant when it comes to studying measures that have to be adopted under unanimity rule. Now, even if unanimity is often resorted to, even when it is not required, the game is not at all the same for rules to be adopted under qualified majority (QMV). Under QMV, as we explained in the first section, strategies will be quite different. As an empirical indicator of minimum range winning coalitions we developed a new measure: for each of the 108 successive formations of the Council of ministers, we calculated the ideological positions of all governments. Then we compared the relative ideological range of each possible minimum winning coalition. We relied on the standard deviation as the indicator of coalition heterogeneity. As argued in the first section, we expected governments to be most cooperative when this deviation is weakest. From our point of view, we do not need (and we are unable) to observe the effective realization of the minimum range winning coalition (MWRC) thus defined. Rather, in line with our model, we expect that those outside that coalition will be a lot more cooperative and thus facilitate negotiation and agreement when the MRWC is comparatively small. It will work like a shadow over negotiations, either facilitating or inhibiting them.
4.2 Model

Analyses of the duration of legislative processes invariably and rightly rely on some form of survival models. In the case of the EU, these studies have existed for a while, even though the great majority probably deals with the US Congress. Box-Steffensmeier and Zorn have pointed to the potential danger of using survival models based on the proportional-hazards assumption when studying politics (2001)11, as this assumes that the effect of an independent variable is constant over time. Yet, as the authors argue (also see Martin 2004, Golub 2008), this assumption is hardly ever questioned or confirmed. A treatment’s effect may weaken over time. An alliance may vary strong in its early days and encounter increasing tensions over time. In sum, the potential presence of “time-varying covariants” or ”common covariants“ (Broström et al. 2012) may make the results of Cox models dubious. Golub (2007) has rightly argued that this problem should be taken into account when studying the duration of legislative procedures in the context of the EU. Put differently, some of the potential determinants of ”survival“ may change over the period under study. This has often led to taking decisions on whether to take into account a particular condition on the day of its introduction to parliament or on the day of its adoption. Yet, conditions may change during this period and (co-)determine duration. For instance, a major economic crisis or a terrorist attack may postpone significantly the adoption of a given bill that is suddenly no longer considered urgent. Without resorting to extremes, there are issues like the executive’s popularity, the proximity or distance to elections or unemployment figures that may lead agenda-setters to push a given item on or off the agenda. Moreover, the likeliness that a given bill is adopted under a given legislature may depend on changing co-variants such as the evolution of issue salience, interparty or party-internal conflict and other issues. It may also be impacted by mid-term elections or regional scrutinies that may affect the general level of conflict and, thus, the probability that a given bill is adopted.

We want to test for one particular communal covariant, as explained in the previous section, i.e. the ideological compactness of the Council. The only solution consists in multiplying each case by the number of periods, treating each case per period as a separate observation. For the period under considerations, roughly from 1992 to 2003, if we limit ourselves to directives only, we have 575 observations the OIE database. Applying our technique of treating each period separately, this sums up to 9716 observations.

Yet, the single most important determinant of adoption is time. On average, acts adopted under codecision take 431 days during the period under study com-
pared to 757 and 1065 for decisions with two or three readings. Figure 5 illustrates those differences over time by accounting for the number of readings.

We add several control variables. Two are related to time. The first, length, simply indicates the number of days that went by since the transmission of the proposal by the European Commission and the period under study. This is important, since there is normal life cycle to bills. Even if the EU does not apply the legislative discontinuity principle (cf. supra), bills take some time to be examined and are usually adopted within a certain time span. Hence, there is a certain time span during which adoption is most likely. A second, concerns the number of readings. Obviously this variable is partly endogenous and related to the level of conflict. Yet, as figure 2 shows, once a second or third reading become necessary the intrinsic length of this procedure considerably lengthens the process. As a consequence, even if this takes some information away, we are confident that remaining levels of conflict, beyond the issue of the number of readings, are still important. The variable "multiple readings" takes the form of a dummy, coded '0' for one reading and '1' otherwise. Finally, we include an enlargement dummy, coded '0' before
May 1st, 2004 and '1' afterwards. It has been often argued that the Nice Treaty in combination with enlargement (e.g. Tsebelis & Yataganas 2002), should render decision-making considerably more difficult. And generally figure 5 shows an upward tendency in decision-making length.

5 Results

We run several regressions to compare our measure to other existing ones. Table 1 presents three different specifications. For the sake of simplicity, we have restricted our sample to directives only. We thus do not control for alternative decision-making rules. Table 1 presents the results of three models.

Before turning to our central independent variables, let us briefly discuss the control variables. All three have significant and robust effects across all our models. Multiple diminishes - quite naturally - the odds of adoption. Provided that this is a dummy variable, its effect is consistently strong across all models. The effect of length is also constant and significant across all models. The “older” the proposal, the more likely it is to be adopted. The standardized measure here indicates, that an increase of length by standard deviation, i.e. 517 days for our dataset, will increase the likeliness of adoption by \(\exp(0.151)\) or 11.6 percent in model 1 (11.7 percent in model 2 and 3).

Finally, enlargement, has had a strong negative effect on the likeliness of adoption, which, again, is consistent and significant across all models, decreasing the chances of adoption of any given bill by 38 to 40 percent. Now, this is certainly interesting and noteworthy, but should be taken with a lot of precaution. Figure 5 show the evolution of the average length of bills for different number of readings. It shows that there is no clear break between the period before and after the 2004 enlargement. This does not mean that this effect is untrue, but that it would require further analysis and a more appropriate research design, such as a discontinuity regression design (Imbens & Lemieux 2008).

Model 1 uses the classical range variables on our data. Range indicators do have some explanatory power. The Left-Right range or polarization measure has a significant effect on adoption in line with the work of König or others. This is not true for EU range, however. The effect is weak and not significant. However, model 2 shows that a change of one standard deviation of our own conflict measure, \(LR \text{ std. dev.}\), has a much stronger effect on duration, increasing strongly the odds of adoption in a given period. More surprisingly still, the effect of divisions on EU issues becomes significant and highly important once we take into account
Table 1: Regression results from a survival analysis with time-varying covariants.

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef (Wald p)</td>
<td>Coef (Wald p)</td>
<td>Coef (Wald p)</td>
</tr>
<tr>
<td>LR std.dev.</td>
<td>-1.336*** (0.000)</td>
<td>-1.123*** (0.000)</td>
<td></td>
</tr>
<tr>
<td>EU std.dev.</td>
<td>-1.914*** (0.000)</td>
<td>-2.117*** (0.000)</td>
<td></td>
</tr>
<tr>
<td>LR polar.</td>
<td>-0.372* (0.012)</td>
<td></td>
<td>-0.251 (0.162)</td>
</tr>
<tr>
<td>EU polar.</td>
<td>-0.096 (0.144)</td>
<td>-0.105 (0.114)</td>
<td></td>
</tr>
<tr>
<td>Multiple read.</td>
<td>-0.526*** (0.000)</td>
<td>-0.518*** (0.000)</td>
<td>-0.525*** (0.000)</td>
</tr>
<tr>
<td>length</td>
<td>0.151*** (0.000)</td>
<td>0.154*** (0.000)</td>
<td>0.154*** (0.000)</td>
</tr>
<tr>
<td>enlargement</td>
<td>-0.970*** (0.000)</td>
<td>-0.930 (0.000)</td>
<td>-0.924 (0.000)</td>
</tr>
<tr>
<td>N(Events)</td>
<td>9716(575)</td>
<td>9716(575)</td>
<td>9716(575)</td>
</tr>
<tr>
<td>Max. loglike.</td>
<td>-2938.4</td>
<td>-2907.5</td>
<td>-2905.1</td>
</tr>
<tr>
<td>LR test statistic</td>
<td>82.6</td>
<td>144</td>
<td>149</td>
</tr>
<tr>
<td>Overall p-value</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

within-coalition heterogeneity, rather than ideological range of the entire Council. Model 3 includes both “old” and “new” measures. The significant effect of the polarization measure in model 1 disappears, while our coalition heterogeneity measure resists. The effect is quite important: a standard deviation increase in coalition heterogeneity along the left-right axis will decrease the chances of adoption by 32.5 percent (for model 3). A standard-deviation increase in EU related heterogeneity will decrease the chances of adoption by 12 percent. As figure 4 showed, there is a certain degree of volatility in coalition heterogeneity and our models show that this does have an important impact.

For the sake of presentation, we redid the above regressions with simplified independent variables (not shown). We cut the two variables into three thirds, i.e. above, around and below the median. Figure 6 shows the hazard functions for both heterogeneity measures for each of the groups.

Those early plots need still some cleaning, but they confirm at least partially the intuition from the regressions. The cumulative hazard functions for left-right heterogeneity show in fact weaker effects than expected. The increased likeliness of adoption is visible only for the later periods, i.e. after about 60 periods (i.e. Council composition changes) and much less so before. The effect is much clearer for EU related coalition heterogeneity. The more compact group (plain line) has hugely increased chances of success from the very early periods onwards. And even if the curve flattens quickly, compact groups have a much higher chance of adoption throughout. It is only towards the end of the “maximum” length of
around 80, i.e. more than four years, that the curves converge. They never touch, however, as proposals are adopted beforehand if they undergo period that are more ideologically compact.

Those are very preliminary results for the empirical analysis, which still need some cleaning. Yet, they largely confirm the the model developed in earlier sections. Coalition heterogeneity clearly is a good predictor of the duration of legislative procedure and gridlock. The empirical validation probably suffers from the lack of cases (575 adopted directives) and should therefore be extended to more cases and longer periods to confirm our results.

Notes

1 There are now 28 countries since the accession of Croatia on July 1st, 2013. For the period under study, there are only 27 member states, however.

2 Under the Lisbon Treaty, the co-decision procedure has been renamed as the Ordinary Legislative Procedure (Article 294 TFEU). Under this procedure, the EP can amend the common position of the Council during two stages of the procedure. If no decision is reached after the first reading, a “conciliation committee” must adopt the final decision with Qualified Majority of the Council and Simple Majority in the EP. The other relevant procedure we consider in the period covered by this study is consultation. Consultation requires the approval of the Commission bill by the Council by QMV, and the use of unanimity if the Council wishes to amend the bill in its common position.

3 In the years 2002 and 2003, the average number of legislative acts passed by the Council was 194 per year. In the immediate period following the enlargement this amount decreased
considerably (134 pieces in 2005). However, from 2006 to 2008 the total adoption rate was back to normal, with an average of 210 acts per year (European Union Legislative Output 1999-2010 (2013)).

4 For a large time span, however, adoption rates can offer a measure of gridlock generated by system-wide changes (cf. Crombez & Hix 2012).

5 This inaccuracy of measurement is particularly relevant in capturing the political variable of preference heterogeneity in the Council, i.e. polarization. As Golub acknowledges, his and other authors’ measures of preference heterogeneity in the Council are not based on appropriate data, and allow, at best, an tentative interpretation of the effect of enlargement, and more generally, about the effect of the legislators’ preferences (Golub 2008, 175). Yet, in our view, an adequate measure of heterogeneity does not only depend on the availability and coding of data. The way we measure heterogeneity of the government preferences’ covariate has a critical role in our design strategy to explain changes in our dependent variable of duration.

6 A cohesive decisive coalition may prefer to vote for the status quo as their final policy choice if its members are indifferent about current and future opportunities of policy gains. But this symmetry of events is unlikely to be found empirically.

7 The Commission is unlikely to present a bill unlike it anticipates that the Council will accept to vote on it (König and Junge, 2008). As the game is conceived in cooperative form, it is useful to think about a Commission bill as the whole Pareto set of feasible outcomes from which the Council draws a final common position.

8 The model can be extended to one m-dimensional space by assuming a Euclidian space with metric properties (de Leon 2012). We limit the description to the one-dimensional case to allow for an empirical application of the theoretical propositions.

9 Our model of preferences is in the same spirit of Diermeier’s and Vlaicu’s model of preferences for parties of like-minded legislators (Diermeier and Vlaicu, 2011) but the methodology differs.

10 If the status quo between the ideal points of governments, then almost every proposal for a vote will be rejected in favor of maintaining the status quo and postpone the vote for the next period.

11 Also see Box-Steffensmeier & Jones (2004).

References

