Explaining Political Knowledge in a Comparative Context*

Mathieu Turgeon
University of North Texas

Robert C. Luskin
University of Texas at Austin
ABSTRACT

Quite a lot has been written about the extent to which ordinary citizens know about and understand politics, almost all of it focused on the American case and very little of it therefore about the effects of political institutions (the nature and competitiveness of the parties, the presence or absence of compulsory voting requirements, etc.) and the information environment (the roles of public versus private media, the nature of the laws governing freedom of the press, etc.), which vary mostly cross-nationally. Estimating multi-level models on CSES data from a wide range of countries, this paper examines both the sources of the country-level variation political sophistication and the ways in which institutional arrangements and the information environment help or handicap citizens in learning about politics.
Despite some still flickering dissent, it has long been widely accepted that most people know very little about most aspects of politics, and the (usually implicit) presumption is that this is true, in somewhat varying degree, always and everywhere. But this variation in degree, insufficient though it may be to alter descriptions of every public as knowing relatively little, may nonetheless be consequential. The timbre of a country’s politics may well depend, in at least some measure, on the political knowledgeability of its citizens. Where the public is more knowledgeable, the distributions policy attitudes and votes should track those of values and interests more closely; voting and other forms of participation should be more common; and the media’s treatment of politics may be less frivolous (although this last could be a cause as well as an effect of a more knowledgeable public).1

From a sizable number of single-country surveys, we do know that the distribution of political knowledge is routinely right-skewed, with only a relatively few people knowing very much. We also know, at the individual level, that knowledge tightens the connections between interests and values, on the one hand, and policy attitudes and votes, on the other (Bartels 1996, Delli Carpini and Keeter 1996, Althaus 1998), and that it increases the probability of voting (xxxx). What we do not know is how knowledge’s distribution, determinants, and effects may vary across countries. Gordon and Segura (1997) use Eurobarometer data to provide one account of the determinants of knowledge in twelve Western European countries. But their study is the exception, and scattered single-country surveys, with relatively few shared items (not generally including knowledge items) permit only rough and casual comparisons.

This paper makes a start by describing and trying to explain the cross-national variation in political knowledge. Using data from the Comparative Study of Electoral Systems, we examine both the individual-level determinants within given countries and the ways in which
their effects depend on political institutions and the information environment, which (at least at any given time) are constant within but vary across countries. As a preliminary step, we also consider how to measure political knowledge as well and as comparably as possible across countries.

Data

The recent advent of coordinated cross-national surveys, notably including the World Values Survey, the Pew Global Attitudes Survey, and, at the regional level, the LapOp, Eurobarometer, Latinobarometer, Afrobarometer surveys, opens new possibilities for systematic comparative analysis of political knowledge (among other variables).\(^2\) Here we employ data from the Comparative Study of Electoral Systems (CSES), one of the richest and widest-reaching of the lot.

The CSES, a program of coordinated national election studies, affords three kinds of data: individual-level surveys of political behaviors and attitudes (vote choice, party and candidate evaluations, and the like); district-level information about the election (electoral returns, numbers of candidates and of parties, and the like); and national-level information about the election and the political system at the time of the election (electoral rules, regime characteristics, and the like). The individual-level data include measures of political knowledge and a number of variables plausibly affecting it. So far, the CSES has completed two modules, covering more than 70 elections in over 40 countries between 1996 and 2006. The sampling method, the sample size, the interviewing mode, and other design details vary—widely—with the election study.\(^3\) For further information, see http://www.umich.edu/~cses/.

Measurement

Comparing anything across countries requires at least roughly comparable measures
(Elkins and Sides 2008). This is a greater challenge for political knowledge than for some other variables because the information it might matter to know varies so widely across countries. What are comparable pieces of information to have or lack in the U.S. versus France versus Japan versus Peru? Institutions, actors, and issues vary, both across countries and (especially in the case of actors and issues) over time, leading formally parallel facts to vary in both salience and importance. An Israeli’s being able to identify the president of Israel shows more knowledge than a Brazilian’s being able to identify the president of Brazil, a more salient office. A Canadian’s knowing which party controls the Canadian House of Commons matters more than an American’s knowing which party controls the U.S. House of Representatives, a less powerful body (assuming a majority government on Canada).

The most straightforward way of gauging political knowledge is via open- or closed-ended questions seeking factual information about public figures, current events, the background to policy decisions, or the workings of political institutions. Their defining characteristic, and their great strength, is that they are possessed of more or less unambiguously correct answers. Their weakness, in the comparative context, is that it is difficult to know what facts are comparable. The CSES affords three factual items per country, varying enormously from country to country in what they ask about.

An alternative approach, developed by Luskin (1987) and Zaller (1992), constructs knowledge items from placements of parties or candidates on policy or ideological scales. A placement, say, of the British Labour party on the left side of a left-right scale, or of the British Labour party to the left of the British Conservative party, is treated as correct, all other placements and don’t know (DK) responses as incorrect. Following Luskin, Cautrès, and
Lowrance (xxxx) and Luskin and Bullock (xxxx), we term the first version of this approach as gauging “absolute,” and the second as gauging “relative” correctness.

The disadvantage of this approach is that what counts as correct is less undebatably so. Thus indices composed of such placement-based items correlate somewhat less strongly with criterion variables related to knowledge than do indices based on factual items (Luskin and Bullock xxxx). The offsetting advantage, in the comparative context, is that the ideological or policy locations of the most prominent political parties are probably more comparable pieces of information to have or lack. The number of parties and thus the salience of the most salient (generally the biggest) vary across countries, but placing say the three biggest parties is more clearly the same task in different countries than is answering superficially parallel factual questions about political figures, institutions, or issues.

A variant, adopted by Gordon and Segura (1997), revolves around the distance between the respondent’s placement and the party’s “actual” location. This offers the advantage of more graduated measurement at the cost of adding a further layer of debatability, since the parties’ exact numerical locations are impossible to know any confidence. Of course they can be estimated by mean placements—by the whole sample (as in Gordon and Segura 1997), by the most knowledgeable respondents (by some independent measure), or by experts. In our view the latter two are the superior options, but the results in Luskin and Bullock (xxxx), as well as our own preliminary explorations with the CSES data suggest that no distance-based measure works very well.

For present purposes, we adopt an absolute placement-based measure, based on the respondent’s placements of the major political parties (numbering between two and six, with a mean of 4.43 and a standard deviation of 1.31). This means, e.g., taking placements of the
Labour party on the left side of the left-right scale as correct, no matter where the Conservative party is placed, rather than as taking placements of the Labour party to the left of the Conservatives as correct, no matter which side of the scale either is placed on) and treating DKs and midpoint responses (which resemble DKs) as incorrect. We use the CSES’s expert placements to determine the correct side of the scale. The results in Luskin and Bullock (xxxx) and Luskin, Cautrès, and Lowrance (xxxx), as well as our own preliminary explorations with the CSES data, suggest that this is the optimal way of converting placements into knowledge items.

Explanation

At the individual level, the factors affecting political knowledge can be grouped under the headings of the *opportunity*, the *ability*, and the *motivation* to learn about politics (Luskin 1990). Opportunity includes exposure to political information in the media, occupation, and education; ability includes intelligence; and motivation includes political interest and to a lesser degree education. In Luskin’s (1990) U.S. results, motivation and ability appear to count for a great deal, opportunity for very little. Interest has by far the biggest effect, intelligence some, but education (controlling for interest and intelligence) virtually none. As his paraphrase of Hamlet sums it up, “the readiness is pretty nearly all.”

But of course a good many more macro-level factors, having to do the with the nature of the political system, the circumstances of the day, the nature and behavior of the mass media, and the political culture may also affect political knowledge. These have been much less examined, though Gordon and Segura (1997) and Arnold (2007) have made a nice start. Here we offer a multilevel (HLM) model to explain variation both across individuals and across countries and elections.
Individual-Level

Of course our individual-level modeling is constrained by the CSES’s selection of variables. Not everything that theoretically should or empirically seems to affect sophistication is available in all or at least most of the CSES studies. Thus we exclude intelligence and political interest, the prime movers in Luskin’s (1990) results, for want of sufficient data. Our hope is that some of the other regressors—education, most notably—may appropriate their effects in their absence.

At the individual level, our regressors are:

Education. Findings about education’s effect on political knowledge have been starkly mixed, with some studies suggesting a very large effect, others essentially none. These differences may largely rest on other variables it has to contend with. With interest, intelligence, and occupation controlled for, any remaining effect of education should stem from its educative value (a matter of opportunity rather than ability or motivation). Here, sans control for interest or intelligence, we may hope that education proxies them. Operationally, education here is an 8-point scale where higher values indicate more formal education. A value of 1 indicates no formal education at all while 8 indicates the respondent has completed a university undergraduate degree.

Income. Higher incomes generally mean more time to devote to politics. Income may also proxy some of what Luskin (1990) calls “political impingement”: the exposure to political information and incentives to process it as part of one’s job. Higher income occupations doubtless tend to be more politically impinged, although the correlation is doubtless far from perfect. We measure income on a 5-point scale placing respondents into the appropriate quintile. Higher values denote higher incomes.
Gender (Male). This is a dummy variable distinguishing men. Almost everywhere, men appear to know more politics than women—perhaps because politics has traditionally been a mainly masculine domain, although the survival of this inequality in economically and politically developed countries is a curiosity, given the elimination and even reversal, in recent decades, of the similar inequality in turnout.

Age. This is simply measured in years. In established democracies, age is well known to affect knowledge. Older people are less distracted by life’s start-up costs, and even those who remain relatively uninterested in politics have had a longer period in which to pick up incidental knowledge as they grow older. It is plausible to see this life-cyclical effect as roughly logarithmic, with the largest gains coming between youth and middle age (as is true of turnout), although we take it for present purposes as linear. In newer democracies, the story figures to be complicated by a substantial generational effect. There, the most knowledgeable may those who have come of age during or just after the democratic transition, usually a time of enormous ferment and suddenly elevated incentives to pay attention. In these circumstances, the habits of older voters, used to inutility of following politics under an authoritarian regime, may hold them back. Thus we posit that age’s effect depends on the age of the democratic regime, a macro level variable we introduce below.

Marital Status (Married). This is a dummy variable distinguishing people who are married or living in marriage-like relationships. Being married increases one’s probability of voting, although the reason is unclear. It may be that being married makes people happier and likelier to engage in all manner of pro-social behavior, including voting, or that it is harder to hide a failure to vote from a spouse than from friends and coworkers. At any rate, it is at least plausible that some of this effect on voting may carry over to political knowledge.
Employment Status (Unemployed). This is another dummy variable, the plausibility of whose effect also rests on a well established parallel effect on turnout. In this case, however, there is a clearer extension of the same logic to political knowledge. Being unemployed is demoralizing, and the search for employment distracting. The unemployed thus have both diminished motivation and diminished opportunity to inform themselves about politics.

Occupation (Blue Collar). This is an admittedly pale version of occupation qua political impingement, a dummy variable distinguishing those holding blue collar jobs. Blue collar jobs only rarely involve much political information or incentive to pay it heed, although not all white collar jobs or forms of self-employment do either. Some jobs considered here as blue collar jobs include occupations related to agriculture and fishery, clerk positions in the service industry, but, of course, also all those requiring workers to operate machinery.

Rural residence. This is another dummy variable, and another rationale borrowed from the literature on turnout. Even controlling for education, income, and occupation, people in urban areas tend to have higher voter turnout and, it is reasonable to suspect, higher knowledge levels.

System/Election-Level

At the system/election level, we consider variables having to do with political institutions, the party system, and the mass media (a number of them familiar from Gordon and Segura 1997). Some vary over time as well as across countries—operationally, given the timing of the observations, with the election. Others vary, ay least, in practice, over a span of a just a few decades, only with the country. To save words we shall mostly refer simply to the “election level,” although a good part of the variance at that level is in fact by country.
This is still work in progress, and we do not necessarily think the present roster exhaustive, even of readily measurable system/election variables. We hope, for example to add the country’s age as a democracy, for the nonce only weakly proxied by the mean age of the two biggest parties. For the moment, however, this is the list:

Effective Number of Parties. Contrary to Gordon and Segura (1997) who argue that more numerous parties should decrease the costs of acquiring political information, up to a point, we believe that more numerous parties should monotonically increase them. It is harder to keep track of three parties than two, of four parties than three, etc. We use the Laasko and Taagepera (1979) measure of the effective number of parties, which gives less weight to marginal parties. The measure is $\text{ENP} = 1/\sum s_i^2$ where s_i is the proportion of seats of the i^{th} party. The measure is based on the CSES’s information about the six largest parties.

SMSP. This is a dummy variable to distinguish countries with single-member legislative districts with the winner decided by simple plurality, as opposed to countries with any manner of proportional representation (PR). As such, it is a dichotomous version of a four-category measure, rather inaptly known as “electoral competitiveness” or “district magnitude,” whose additional categories further distinguish three broad varieties of PR. We believe, however, that the influential distinction here is between SMSP systems and the rest, hence the dichotomy.

Disproportionality of Representation. Distributions of seats that visibly and chronically fail to reflect the distribution of votes are an irritant to many voters, especially those on the losing side of the mistranslation, which in turn stimulate greater interest and learning. Following Lijphart (1984), we measure this as the mean difference between the vote and seat shares of the two largest parties.
Unicameral Legislature. Bicameral legislatures figure to make the relationship between votes and policy outcomes murkier and thus to increase information costs and decrease political knowledge. Again following Lijphart (1984), we use a dummy variable distinguishing countries coded in the CSES dataset as having national legislatures consisting of a single chamber.

Age of the Parties. In some countries parties rapidly appear and vanish, in others they last for decades or longer. The longer the parties stay on stage, the easier it should be for people to discern their left-right locations. Of course minor parties may come and go, while the major ones linger, and may be hard to locate no matter what. So the parties whose longevity matters most may be the biggest ones. Operationally, therefore, this variable is mean age (in years) of the two largest parties, as measured by their vote shares.

Public TV Viewership. This is the percentage of the aggregate market share of the five most-viewed TV stations that belongs to state-owned stations, as measured by Djankov et al. (2003). Given the tendency of public TV stations to be richer in political information content (Iyengar xxxx), people living in states that have a larger public TV viewership should have greater exposure to political information.

Extremity of the Parties. Parties nearer the center are harder to locate. More people will place a party whose real location is 6 (slightly right of center) at 0-5 (dead center or left of center) than one whose real location is 8, as the results in Luskin, Cautrès, and Lowrance (xxxx) confirm. For present purposes, we use the parties’ mean distance from the midpoint (5), a variable that thus ranges from 0 (when all the parties are exactly at the midpoint) to 5 (when they are all at 0 or 10). Again we take the “real” locations from the CSES expert ratings.

Model

Since these variables are multilevel, with individual-level observations embedded within
countries, we express the hypotheses that they all affect individual-level political knowledge in a multilevel model (Bryk and Raudenbush, 1992; Steenbergen and Jones, 2002). This avoids the likely violation of classical assumptions in the “naïve pooling” of all individual-level observations, regardless of country (as in Gordon and Segura 1997). The problem is that the disturbances associated with given observations are unlikely to be “spherical”—i.e., to be independent or have the same variance across elections (Burton, Gurrin, and Sly, 1998). Naïve pooling tends to bias the estimated standard errors downward and thus to produce falsely “significant” results (Barcikowski, 1981).

More precisely, we propose the following two-level linear multilevel model:

\begin{align}
K_{ij} & = \beta_{0j} + \sum \beta_{pj} x_{p ij} + \varepsilon_{ij} \\
\beta_{0j} & = \gamma_{00} + \sum \gamma_{0q} z_{q ij} + \delta_{0j},
\end{align}

implying

\begin{align}
K_{ij} & = \gamma_{00} + \sum \gamma_{0q} z_{q ij} + \sum \beta_{pj} x_{p ij} + \varepsilon_{ij} + \delta_{0j},
\end{align}

where \(K_{ij} \) is the political knowledge of the \(i^{th} \) individual in the \(j^{th} \) election study, \(x_{p ij} \) is the \(i^{th} \) individual observation in the \(j^{th} \) election study on the \(p^{th} \) individual-level regressor, \(x_{q ij} \) is the \(j^{th} \) country-level observation on the \(q^{th} \) country-level regressor, \(\beta_{0j} \) and \(\beta_{pj} \) are the \(j^{th} \) election’s intercept and the \(p^{th} \) regressor’s slope in the individual-level equation for political knowledge, and \(\gamma_{00} \) and \(\gamma_{0q} \) are the intercept and the \(q^{th} \) regressor’s slope in the election-level equation for the \(j^{th} \) election’s individual-level intercept \(\beta_{0j} \), and \(\varepsilon_{ij} \) and \(\delta_{0j} \) are the disturbances of individual- and election-level equations (1) and (2) respectively (both assumed to be multivariate normal and assumed to be independent of each other).
In substantive terms, the individual-level equation (1) expresses political knowledge as a linear function of education, income, age, gender, blue collar worker, rural residence, being unemployed, and being married. The election-level equation (2) expresses the individual-level equation’s intercept β_{0j} and thus political knowledge as a linear function of the age of the parties, the electoral system’s being SMSP, the national legislature’s being unicameral, the disproportionality of representation, the effective number of parties, public TV’s percentage of TV viewership, and the party mean extremity.

Note that “linear” here means linear and additive “in the parameters.” There is actually one nonlinearity (strictly speaking, nonadditivity) in the variables. As a crude approximation of the argument above, we include the product of the respondent’s age and the age of the parties, thus allowing age to be less of an advantage in younger democratic systems (which tend to have younger parties).

Results

We estimate equation (3) by maximum likelihood. The results, in Table 1, show all eight individual-level regressors as having statistically significant effects in the expected direction.

![Table 1 about here](image)

More highly educated, older, married, and male respondents know more about politics, while blue collar workers, the unemployed, and rural residents know less. The strongest effect is education’s. The most highly educated score .252 higher on our 0-1 knowledge scale than the least. Income’s effect and gender’s effects are also fairly strong. The differences between the poorest and richest respondents and between men and women are .068 and .065, respectively.

As anticipated, the effect of age is conditioned by the age of the democratic system, proxied for the time being by the mean age of the two largest parties. The slope of knowledge on
age is a decreasing function of the parties’ mean age. Older, apparently, is politically wiser, but less so in younger democracies.

To derive something like a pseudo-R^2 for this individual-level equation, we estimate the linear model expressing K_{ij} as a function simply of a full set of election dummies ($Q - 1$, where Q is the number of elections). This can also be seen as an ANOVA model. The relevant results are the election-level and residual variances, the latter attributed to the individual-level. The estimates, in Table 2, put the election-level variance at .028 and the individual-level variance at .085, suggesting that about 75% of the total variance lies at the individual level. This individual-level variance is reduced to .077 by the individual-level regressors in equation (1), making for a proportion reduction, in the nature of a pseudo-R^2, of $(.085 - .077)/.085 = .094$.

Many of the election-level regressors also have strong effects, and again all in the expected directions. Countries with older parties, in which public TV has a larger share of the audience, with more extreme parties, or with unicameral legislatures have higher levels of political knowledge, while those with an SMSP electoral system, with disproportional representation, or with a larger effective number of parties have lower ones. The estimated effects of party extremity, an SMSP electoral system, disproportional representation, and the effective number of parties are statistically significant at the .05 level.

The effect of party extremity is particularly great. An increase from 0 (minimum extremity) to 5 (maximum) extremity increases the expected level of knowledge measure by .515. More realistically, since no country will ever be at either 0 or 1, an increase from the lowest observed value (1.2 for Taiwan) to the highest (3 for Japan) increases the expected level
of knowledge by .185, still a major increase. The effect of SMSP is also quite sizable. The expected level of knowledge in SMSP systems is .096 lower than in PR systems.

Again comparing the variance component estimates from Tables 1 and 2, we see that the introduction of these election-level regressors produce a very large proportion reduction of variance of (.028 - .013)/.028 = .536. Clearly election- (again, in large part, country-) level variables add a great deal to our explanation of political knowledge—although the comparison to the individual-level regressors is not entirely fair, as we remark below.

Discussion

This is, as we say, still a work in progress. We have in mind to try a number of additional election/system-level variables, including media diversity, newspaper readership, the typical closeness of elections, the frequency of alternations in control of government, income inequality, the strength of the parties and of the labor unions, and government spending on education. Unfortunately, we are much more hamstrung at the individual-level. What the data afford is mainly sociodemographic variables, limiting us to a reduced form explanation. The most powerful individual-variables are the more proximate psychological ones: political interest and to a lesser extent (in both power and proximity) cognitive ability or intelligence. But they are unavailable. In fact even the existing roster of election/system-level variables, hopeful though we are of augmenting and refining it, is closer to closer to complete. It would therefore be a mistake to put too much weight on the seemingly greater collective explanatory power of our election/system-level variables.

We may also tinker with the functional form of equations (1), (2), and therefore (3). One variation we have already approximated is to allow the effect of the individual’s age to depend on the political system’s age as a democracy, so far tested only crudely, by using the mean age of
the two biggest parties to proxy the age of the democratic system. We relieving the age of the parties of this proxying role, once we have merged in data on the age of the democratic system, which may also have a significant “main effect.” But other possible macro-micro interactions want thinking about. Education and gender, for example, may play more important roles in more unequal societies and in those in which governments spend less on education.

Our hope is that the results may of this analysis and its successors may ultimately be helpful for reformers of existent political systems or designers of nascent democracies, to the extent that more knowledgeable publics, as we firmly believe, make for better—more representative—democracy.
REFERENCES

Table 1. Determinants of Political Knowledge

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Effects</td>
<td></td>
</tr>
<tr>
<td>Individual-level</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>.183 (.109)</td>
</tr>
<tr>
<td>Education</td>
<td>.036* (.001)</td>
</tr>
<tr>
<td>Income</td>
<td>.017* (.001)</td>
</tr>
<tr>
<td>R’s age</td>
<td>.001* (.000)</td>
</tr>
<tr>
<td>Male</td>
<td>.065* (.002)</td>
</tr>
<tr>
<td>Blue collar worker</td>
<td>-.029* (.003)</td>
</tr>
<tr>
<td>Rural resident</td>
<td>-.008* (.003)</td>
</tr>
<tr>
<td>Unemployed</td>
<td>-.019* (.005)</td>
</tr>
<tr>
<td>Married</td>
<td>.012* (.002)</td>
</tr>
<tr>
<td>System-level</td>
<td></td>
</tr>
<tr>
<td>Age of parties</td>
<td>.000 (.000)</td>
</tr>
<tr>
<td>SMSP</td>
<td>-.096* (.037)</td>
</tr>
<tr>
<td>Unicameralism</td>
<td>.006 (.036)</td>
</tr>
<tr>
<td>Disproportionality of representation</td>
<td>-.014* (.007)</td>
</tr>
<tr>
<td>Effective number of parties</td>
<td>-.018* (.009)</td>
</tr>
<tr>
<td>% public TV</td>
<td>.000 (.001)</td>
</tr>
<tr>
<td>Party extremity</td>
<td>.103* (.035)</td>
</tr>
<tr>
<td>(R’s age)*(Age of parties)</td>
<td>.000* (.000)</td>
</tr>
<tr>
<td>Variance Components</td>
<td></td>
</tr>
<tr>
<td>Election-level</td>
<td>.013</td>
</tr>
<tr>
<td>Individual-level</td>
<td>.077</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>-8926</td>
</tr>
</tbody>
</table>

Note: Table entries are maximum likelihood estimates with estimated standards errors in parentheses. *<.05
Table 2. ANOVA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Effects</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>.498* (.021)</td>
</tr>
<tr>
<td>Variance Components</td>
<td></td>
</tr>
<tr>
<td>Election-level</td>
<td>.028</td>
</tr>
<tr>
<td>Individual-level</td>
<td>.085</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>-19010</td>
</tr>
</tbody>
</table>

Note: Table entries are maximum likelihood estimates with estimated standards errors in parentheses. *<.05
Figure 1. Mean Knowledge by Election
NOTES

*We thank Anne Etienne for research assistance.

1 Knowledge is one of a close-knit family of variables including “sophistication,” “expertise,” “awareness,” “cognitive complexity,” and “information” (in the sense of information held). Some of these terms are synonymous, others subtly different, but knowledge is the most straightforwardly measured and highly correlated with the rest, and the literature consequently seems to be converging on it. (Compare, e.g., Luskin 2002, 2003 with Luskin 1987.)

2 Accompanied, to be sure, by new challenges, for both measurement (Elkins and Sides 2008) and analysis (Kedar and Shively 2005).

3 The interview mode, for example is sometimes telephone, sometimes face-to-face, sometimes mail back. The sampling method is sometimes random (of various kinds), sometimes quota. The sample size ranges from about 1,000 to more than 5000.

4 The poles of the ideological dimension space are known as “left” and “right” in Europe, as “liberal” and “conservative” in the U.S. and Japan.

5 At odds with Mondak but consistent with Luskin and Bullock (xxxx, xxxx) and Bennett (xxxx).